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A system of hard disks (diameter a) is studied by considering the corresponding 
exclusion disks (radius a). Thus, the results of previous papers on overlapping 
disks can be used for a geometrical analysis of the system. The concept of 
"fluctuating free volume" is compared with free volume theory. Finally, a series 
of computer experiments on hard disks is analyzed geometrically, especially with 
respect to the fluid-solid transition. 

KEY WORDS: Statistical mechanics; hard disks; intersection of disks; 
fluctuating free volume; free volume theory; Monte Carlo computer experi- 
ments. 

1. INTRODUCTION 

The overlap of N equal D-dimensional spheres has been considered in Refs. 
1, 2. In the present paper, the two-dimensional formulas are used for an 
analysis of the hard-disk system. The hard disks (diameter a) cannot 
overlap, of course. However, the exclusion disks (radius a) can. The N 
exclusion disks have the same centers as the N hard disks and are relevant 
for the hard-disk system. (3) For  instance, the centers of disks 1, 2 . . . .  , 
N - 1 cannot be located within exclusion disk N. Properties of overlapping 
disks and spheres have been studied quite a few years ago for the penetra- 
ble-sphere model (4) as well as for the scaled-particle theory. (5) However, 
approximations had to be used for actual calculations. In the present paper, 
the three-dimensional diction (2) will be retained (e.g., "free volume" and 
not "free area") since most of the formulas are valid generally in D 
dimensions. Throughout the paper, systems with periodic boundary condi- 
tions are studied, the volume being V. 
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The volume of intersection (2) of N D-dimensional spheres 1,2 . . . . .  N 
is abbreviated by 1(1,2 . . . .  , N). It is the volume where all N spheres 
intersect. The corresponding surface is termed B(1, 2, . . . ,  N). The follow- 
ing definitions (2) are useful: 

l(j) --~ E I ( i  1 . . . . .  ij) = ~ I ( i  I . . . .  , ij), j ) 0 (1) 
1 < i 1 < . . "  < ~ < N  Mj 

B(j) ~ E B( i  1 . . . . .  ij) = E B ( i l  . . . . .  ~),  j > /1  (2)  
l < i l < - - .  <t)<-<N Mj 

Mj symbolizes the number of nonvanishing contributions to I(j) and thus 
to B(j). Especially, 

I(0 ) = V, I ( 0  = NI* ,  B(~) = N B *  (3)  

I* and B* being the volume and surface of a sphere, respectively. Thus, 
M~ = N in any case. If one likes to study the structure of the system, the 
quantities V(k ) and S(k ) are of advantage. V(k ) is the total volume covered 
by k and only k spheres. S(k ) is the total surface of the border between V(k ) 
and V(k+t ) . Correspondingly, [S(k ) + S(k_O] is the total surface of V(k ) . 
The V(k ) ,k >/0, are disjoint, which is also the case for the S(k ) . The 
volume of the system, V, splits up into the V(~) : 

V =  • V(k ) , NB* = E S(k) (4) 
k > 0  k > 0  

V(o ) is the volume which is not covered by any spheres, S(o ) is the surface 
of V(0 ) . 

Formal definitions and mathematical relations among the above quan- 
tities can be found in Ref. 2. For an easy understanding of the results, the 
main relations will be 

v(0) 
v(1) 
v(2) 
v(3) 
v(4) 
V(5) 

FS(o)] 
I 

~ ( 1 )  I 

~(2) [ = 
t ,  i 

~(3) I 

~  [ 

given now in 

1 - 1  1 

0 1 - 2  

0 0 1 

~0 0 0 

0 0 0 

0 0 0 

1 - 1  1 

0 1 - 2  

0 0 1 

0 0 0 

0 0 0 

the case of 

- 1  1 - 1  

3 - 4  5 

- 3  6 - 10 

1 - 4 10 

0 1 - 5  

0 0 1 

- 1 1 Brn  1 

3 - 4 B(2 ) [ 

- 3 6 B(~I 

1 - 4 /~(4"1 [ 

0 1 B~5~I 

exclusion disks: 

I(0) 

Io) 

1(2) 

I(3) 

I(4) 

1(5) 

(5) 

(6) 



Intersecting Disks (and Spheres) and Statistical Mechanics. II. 501 

F(j) = O, I(j) = 0 if j > 5 and S(~) = 0, B(k + 1) = 0 if k > 4 for exclusion 
disks, (2) which makes the relatively small matrices in (5), (6) possible. For 
the hard-disk system, all geometrical quantities considered above can be 
determined analytically (z) for a given configuration of N disks with 
periodic boundary conditions. For instance, the values V(k ) / V, Z V(IO / V 
= 1, give some information about the structure of the system. The com- 
puter experimental change of these quantities during the fluid-solid transi- 
tion will be studied in Section 4. 

2. FLUCTUATING FREE VOLUME 

Figure 1 shows a possible situation for hard disks at medium fluid 
density. The vicinity of disk 1 is considered. The exclusion disks are drawn, 
regions contributing to different V(k ) can be distinguished. There is one 
small (Sml) and one large (Lal) region within exclusion disk 1 contributing 
to V(0. Sm~ is disconnected from center 1. The probability of occurrence 
of such a region is very small at any density. Sm 1 can only occur if 
r12 ~ FI3 ~ Or, P23 ~ 20 ,  and rl4,~ 20, see Fig. 1. It is very improbable that 
all three conditions are fulfilled at the same time, the first condition 
corresponding to high density, the others to low density. 

2 / - - - - - !  t - - ~  x 

xA-  1. x 

3 

/ 
Fig. 1. Configuration of exclusion disks in the vicinity of disk 1. The disk centers are 
represented by •  centers 1 to 4 being numbered  explicitly. Regions contributing to different 
V(k ) are distinguished as follows if they lie within exclusion disk 1 or are adjacent to it: k = 0 
(vertically shaded), k = 1 (white), k = 2 (horizontally shaded), k = 3 (black). There are two 
white regions within exclusion disk 1. They are termed La I and  Sm I in Section 2, each being 
adjacent to a vertically shaded region. 
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With neighbors held fixed, disk center 1 can freely move within region 
La 1 and the adjacent region contributing to V(o ~ . It is the "fluctuating free 
volume" vf(1) of disk 1 (6) in contrast to the usual (fixed) free volume in free 
volume theory. However, the formulas of Section 1 only yield the total V(k~ 
and not, e.g., vf(1). To determine how the V(k) actually split up into 
separate regions, some kind of pattern recognition would be necessary, (6'7~ 
which is very time-consuming on the computer. In this paper, an approxi- 
mation will be used to determine vy(i). If existence of regions Sm i is ignored 
and if the density is high enough so that V(o ~ is negligible, see below, then 
La i corresponds to vf(i). Thus, 

N N 
V(I ) ~ ~ vf(i) ~ N~f, S(1 ) ~ ~ sf(i) ~ Nsf (7) 

i=1 i=1 

sT(i ) being the surface of the free volume vf(i). The bar indicates averaging 
over one configuration. The number of free volumes is trivially N. Gener- 
ally, N k shall be the number of regions contributing to Vr ~ . Even without 
pattern recognition, two of the N~ can be determined from the known M~, 
Eq. (1). Neglecting regions Smi yields 

N 1 -- M 1 ~ N 

for D-dimensional hard spheres. Moreover, 

D = 2 : N 5 = M 5 

(8a) 

(8b) 

Equation (8b) follows from the fact that at most five exclusion disks can 
have a common overlap. Thus, every (nonvanishing) contribution to 1(5 ~ , 
Eq. (1), corresponds to a region contributing to V(s~. Now, we turn again to 
the computation of free volume. Equation (7) shows an expression for the 
mean free volume and its surface, ~f and gf, valid at high density. A single 
free volume can also be calculated explicitly as follows. If, e.g., particle 1 is 
removed from a given configuration, V(0 ~ increases. Using the notation 

AeX ~ X(all particles except i) - X(all particles) (9) 

for any quantity depending on the location of particles it follows for 
exclusion disks that 

5 
AlV(0  = 2 ( -  1)kA,I(k  (10a) 

k=0 

compare (5). Only the upper bound k = 5 of the sum is specific for the 
two-dimensional case. Using (1) results in 

AxV(o ) = I (1 ) - -  ~ I(1, i)  + ~] I (1 , i , j ) - -  
I < i < N  l<i<j<N 

+ ~ l ( l , i , j , m , n )  (10b) 
l<i<j<m<n<N 

~,, I (1 , i , j ,m)  
l<i<j<m<N 
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Equivalently, 

A1Sw) = - B ( 1 )  + ~ B ( 1 , j )  - ~ B ( 1 ,  i , j )  + ~ B ( 1 , i , j , m )  

- ~ , B ( 1 , i , j , m , n )  (11) 

Incidentally, I(1) and B(1) correspond to I* and B*, respectively, cf. Eq. 
(3). Equations (I0) and (11) are exact for disks. Now, AlVa0 ) is the 
contribution of exclusion disk 1 to V(I) ; cf. Fig. 1. With the assumptions 
leading to (7), i.e., neglecting Sm 1 and I1(o ) , it follows that A 1 V(0 ) = Vf(1). If 
V(o ) is small but not negligible, then 

2xiV(o ) ~ vf(i), AiS(o ) -~ sf(i) (12a) 

[ AiS(o ) /A  i V(0~] 2 [  sT(i)/vf(i) ] (lZb) 

The ratio sf(i)/vf(i) will be considered in the following instead of the single 
quantities vy(i) and sT(i ). In Section 4, the average difference between the 
left- and right-hand side of (12b) will be estimated to be less than 0.2% for 
densities z ~ 0.70. 2 On the other hand, the hard-disk pressure can be 
calculated ~6) via 

Z = P V / ( N K T )  = 1 + �88 (13) 

Combining (12b) with (13), the pressure can be evaluated accurately for the 
dense fluid and the whole solid. In this density range, the error due to the 
approximation (12b) is negligible compared with the statistical Monte Carlo 
error typically being 1%. 

As to the meaning of averages, the following diction is used: If we 
take, e.g., sf(i),gf means average over sT(i ) within a given configuration. 
Additional average over all configurations yields (ST). For quantities like 
V(k), which have a definite value for a given configuration, (V(k ) ) jus t  
means average over all configurations. 

3. THE CELL MODEL (FREE-VOLUME THEORY) 

In the cell model, the disks are located at their lattice positions 
(triangular lattice). Thus, the free volume is fixed at a given density, 
vy(i) = vy(j). Due to the high symmetry, determination of overlaps is 
relatively simple. No regions Sm i occur. For 0 < z < 1/4, the exclusion 
disks do not overlap at all, and 11(0 ) is singly connected. For z > 1/4, 
nearest neighbors overlap, each disk being confined within the cage of its 
neighbors. There exist 2N small isolated pieces of V(0 ) if 1 /4  < z < I /3 .  

This  m a y  be c o m p a r e d  wi th  z = 1 for t r i angu la r  close p a c k i n g  and  the phase  t rans i t ion  
region z = 0.76 to z = 0.80. (8) 
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For z > 1/3, V(0 ) vanishes, and overlaps I ( i , j , k ) ~  0 occur. Starting with 
z - 3/4, next-nearest neighbors also overlap and intersections of four disks 
occur. At no density, there are overlaps of five exclusion disks. Thus, 
N 5 = M 5 = V(5 ) = 8 ( 4  ) - -  0. 

NOW we stick to disk 1 again. It is surrounded by six neighbors 
2 . . . .  , 7  and six next-nearest neighbors 8 , . . . ,  13. Then, 

r,2 = a, r,8 = a~/3, z = ( a / a )  2= �89 (14) 

a being the lattice distance. Furthermore, (2) 

I *  = fifo 2, B* = 2~ro, Xlj =-- rv / (2o  ) 

2xL/27 
Ilj = 2 0 2 [ c o s - l ( x v ) -  x,j(1 -- xv )  ] (15) 

Blj = 40 cos- l( xlj  ) 

I(1, j )  is termed Ilj if it is not zero. Then, B(1, j)  is termed B1j. Using the 
expressions displayed in (14) and (15), Table I shows the results for M k, 
V(~) and S(k) in the different density regions. No mean values have to be 
taken in the cell model (free volume theory) since there are no fluctuations. 

A graphical presentation of V(k) as a function of z is shown in Fig. 5, 
next section, where it is compared with computer experimental results for 
hard disks. It will be seen that the cell model yields V(k ) similar to the 
"experimental" hard disk system, even in the fluid phase. Strangely enough, 
the experimental percolation transition from extensive to intensive free 
volumes (6) (z = 0.245 + -0.02) also lies very close to the cell-model value, 
z = �88 As to the free volume and its surface, the cell-model results are 

0<<. z <<. �88 : Nvf( i )  = V(1 ) + UV(o ) ,  Nsf(i)  = ( N - 1 ) S ( o  ) (16a) 

�88 < z < �89 : Nvf( i )  = V(I) + 3 V(o ) , Nsf(i)  = S(1) + 28(0) (16b) 

�89 < z ~< 1: Nvf( i )  = V(1), Nsf(i)  = S(,) (16c) 

Apart from a direct calculation, the relations for sf(i) can also be ob- 
tained (2) via s f ( i )= - ( 3 / ~ o ) v f ( i )  and (3/3a)V<k) = S<~_~) - S<~). Inci- 
dentally, the free volume has already been calculated for disks (9) and 
spheres (1o) in the cell model. 

Formally, (16b) is also valid for 1/3 < z < 1 since V(0 ) = S(0 ) = 0 
then. Relations (16) may be compared with h i V(0 ) and AfS(0 ) , Eq. (12a): 

N N 

AiV(o ) = V(l ) , ~ hiS(o ) = S~1 ) - S(o ) (17) 
i = 1  i = 1  

(17) is generally valid. In the cell model, A i V(o) and A;S(o ) yield the correct 
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vf(i) and sT(i) if z > 1/3 for hard disks. If z > 1/4, 

vf(i) = A,V(o)[ 1 + 3 V(o)/V(,) ]  
(18) 

V i )  = A;S(0)[1 + 3S(o)/S(1)] 
for hard disks in the cell model, cf. (16) and (17). This results in an estimate 
for the accuracy of pressure obtained via (12b) and (13) in hard-disk 
computer experiments: 

(sf lvf)(AS(o)lAV(o))- '= [1 + 3(S(o))1(S(1))][1 + 3(V(o))l(V(1))] -1 
(19) 

This will be used in the next section. 

4. COMPUTER EXPERIMENTAL RESULTS 

A series of Monte Carlo computer experiments O1) has been accom- 
plished for hard disks (NVT-ensemble). The particle numbers N = 48 and 
N -- 72 have been investigated over the whole density range, the periodic 
cell fitting an ideal lattice as usual. In all runs, the first 0.2 • 106 trials were 
used for equilibration, and will not be considered further. Then, 0.2 • 106 
(z = 0.1) to 1.6 • 106 (z = 0.8) trials were carried out in the fluid range. In 
the solid region, all runs lasted over 1.0 • 106 trials. The portion of 
successful trials ("moves") was about 50%. Every 200th trial was analyzed 
geometrically, giving 1000 to 8000 configurations analyzed for each run. 
This was a compromise between saving computer time and obtaining 
reasonable accuracy. 

To generate fluid start configurations, 48 (or 72), points were distrib- 
uted randomly over the cell. Then the system was "compressed" by 
increasing o until the closest pair touched. 500 Monte Carlo trials were 
carried out before increasing ~ further. The compression stopped when the 
desired density was reached. For  the solid start configurations, we used an 
ideal lattice. One of the main purposes of these computer experiments was 
the study of the phase-transition region, z = 0.76 to z = 0.80. Only in this 
region, both fluid and solid start configurations were used. During the 
computer runs, it was checked, e.g., via the pressure, whether the configura- 
tions remained fluid (or solid), see Table II. Fluid start configurations 
results in fluid systems up to z = 0.80, the highest fluid density considered. 
As to solid start configurations, the system remained solid for z = 0.775 and 
higher densities. At z = 0.750, the solid melted quickly. The above state- 
ments are true for both particle numbers. Furthermore, the geometrical 
quantities investigated are not significantly different for N = 48 and N -- 72 
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Table II. Fluid (F) and Solid (S) States Observed for 72 Disks in the Phase 
Transition Region. Z = PV/(NkT) together with its Average Standard 

Deviation for a Single Configuration is Displayed 
i 

z Start  A v e r a g e  Z Start  A v e r a g e  Z 

0.725 F F 8.69 + 0.94 - -  - -  - -  

0.750 F F 9.60 + 1.27 S F 9.70 _+ 1.24 

0.775 F F 10.37 4- 1.35 S S 9.00 + 1.01 

0.800 F F 11.20 + 1,41 S S 10.03 _+ 1.11 

0.825 - -  - -  - -  S S 11.35 __. 1.26 
i i i 

in most cases. Thus, N = 48 can be considered to be a check of the data, 
only the results for N = 72 being given in Table II and in the following 
figures. 

Since the pressure is an average over particles if expressed via (sf/vf), 
Eq. (13), Z makes sense even for a single configuration. Table II shows that 
the average standard deviation of Z for a single configuration is about the 
same as the difference in Z between the solid and the fluid. The standard 
deviation of the average Z was evaluated taking partial averages over trials 
and turned out to be 0.07 to 0.08 in all cases of the table. If the analyzed 
trials had been thoroughly independent, the standard deviation would have 
been 0.01 to 0.02. This comparison confirms that almost no accuracy is lost 
when analyzing only every 200th configuration since even these configura- 
tions are correlated to a high extent. 

Now, we turn to the results for the geometrical quantities M~. Figure 2 
shows (M~)/N, Eqs. (1), (2), which may be compared with the cell-model 
values, Table I. Within the accuracy of drawing, (Ms)IN vanishes and the 
discontinuities between solid and fluid are not observable. From z = 0.9 on, 
<Mk)/N is constant. Figure 2 does not reflect the structural difference 
between the fluid and the solid. A more detailed analysis of (Ms)/N, 
however, yields a remarkable difference; see Fig. 3a. In the cell model, no 
overlaps of five disks occur; see above. Accordingly, (Ms)IN is almost 
vanishing in the "experimental" hard-disk solid. In the phase transition 
region, the fluid shows much more overlaps M s . This expected result yields 
a criterion to distinguish geometrically between the two phases. 

Figure 4 shows the results for (V(~))/V. Now, discontinuities at 
z = 0.775 are detectable for k = 2, 3. ( V ( 5 ) ) / V  is again zero within the 
accuracy of drawing. For comparison, Fig. 5 displays the values due to the 
cell model, Section 3. Figures 4 and 5 show a similar pattern which is quite 
symmetrical around z = 0.50 to 0.55. This may be compared with the 
one-dimensional case (3) where symmetry around z = 0.50 occurs. In Fig. 6, 
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curves correspond to odd k. For k = 2 and 3, the discontinuity between the fluid and solid 
phases (at z = 0.775) can be observed in this figure. 

the results concerning S(k ) are exhibited. The symmetry is again observ- 
able, <S(4)>/(2Ncm)= {S(4)>/(NB*) being zero within the accuracy of 
drawing. Using an appropriate scale, V(5) and S(4) are qualitatively similar 
to M 5, Fig. 3a, if the phase transition region is considered. To get further 
information, we consider 

<vs> = < V(5 ) >/<Ms> = < V(5 ) >/<Ns> (20) 

compare (8b). v5 is the size of a region contributing to V(5 ) . Figure 3b 
shows the result. Thus, not only more overlaps of five exclusion disks occur 
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Fig. 5. V(k I / V as a function of z for the cell model. The dashed curves correspond to odd k. 
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ing to Eq. (4), ~(S(k))/(NB*)= 1. The fluid-solid discontinuities are too small to be 
detected in this figure. 

Table III. Geometrical Quantities Obtained from Hard-Disk Computer 
Experiments at z = 0.775 

Fluid Solid 

N =  48 N = 72 N =  48 N = 72 ~z ~e 
(Mz)/N 4.81 4.83 4.77 4.77 _a  +,~ 
(M3)/N 5.62 5.66 5.55 5.55 - + 
(M4)/N 1.82 1.84 1.78 1.78 - + 

102(Ms)/N 0.87(5) b 1.32(9) 0.23 0.25 

104( V(0 ) ) / V  0.056(7) 0.026(6) 0.000(0) 0.000(0) 

(VO) ) / V  0.034 0.034 0.039 0.038 + - 

( V(2 ) ) / V  0.224 0.228(3) 0.208 0.209 

( V(3 ) ) / V  0.637(2) 0.631(3) 0.656 0.655 + + 

( V(4 ) ) / V  O. 105 O. 107 0.097 0.098 - + 

10Z( V(5) ) / V 0.004 0.007 0.0004 0.0005 

N(vs) / V 0.005 0.005 0.002 0.002 

103(S(o))/(NB*) c 0.049(4) 0.019(3) 0.000(0) 0.000(0) 

(S(o)/(NB*) 0.134 0.132 0.140 0.140 + - 

(S(2))/(NB*) 0.516 0.514(2) 0.520 0.519 + - 

(S(3))/(NB*) 0.350 0.353 0.340 0.341 - + 

102(S(4))/(NB *) 0.037(4) 0.061(7) 0.006 0.007 

( s4 ) /B*  0.043(7) 0.046(7) 0.027(2) 0.028(2) 
i 

a8 is the sign of the difference (solid-fluid). 8~ and 8 e refer to constant z and P, respectively, 
in the phase transition region. 
bGenerally, the uncertainty of the last digit is _ 1. In any other case, the standard deviation is 
specified by the number in parentheses. 
CB* is equal to 2~ra for exclusion disks, cf. Eq. 15. According to Eq. (4), ~(S(k))/(NB*) = 1 
as well as ~,(V(k))/V= 1. 
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for the fluid (Fig. 3a), but the resulting separate regions are also larger. For 
a quantitative comparison of the fluid and the solid, Table III shows the 
values of the geometrical quantities for N = 48, 72 at z = 775. The uncer- 
tainty of these values is __+ 1 in the last digit unless stated otherwise. The last 
but one column indicates if the corresponding value for the solid is larger 
( " +  ") of smaller ( " - " )  than for the fluid. The sign is the same for N = 48, 
72 and may be generalized to any z in the phase transition region. The last 
column shows the sign of the difference (solid-fluid) not for constant z, but  
constant pressure in the transition region, where (s) 

[Psolid = Pfluid] ~[Zsolid -- ztZuid = 0.03 to 0.041 (21) 

In most cases, the difference fluid-solid is small, but significant. The 
differences between N = 48 and 72 are negligible for the solid data. As to 
the fluid data, the differences are small except for Ms, V(5 ) , and S(4): 
Interestingly, the mean volume (vs)  of the single regions and their mean 
surface (s4), 

($4) = ( S(,) ) / ( Ms) = ( S ( 4 ) ) / ( N s )  (22) 

coincide for N = 48 and 72 within the accuracy. Apart from V(0 ) and S(o ) , 
all fluid values for N = 48 differ from N = 72 towards the solid data. To 
interpret this, we remember the fact (12) that computer experiments with 
high-density fluids may average partly over "solidlike" configurations if N 
is small. Thus, the results for N = 72, z = 0.775, seem to be more fluidlike 
than for N = 48. Furthermore, the decrease of ( M s ) / N  for the fluid in the 
phase transition region, Fig. 3a, may be interpreted as an artificial conse- 
quence of the boundary conditions. Finally, it shall be mentioned that the 
differences between the fluid and solid ( Vck ) ) / V  are not in agreement wRh 
the predictions of Speedy. O) 

Now, it can also be estimated at which density the calculation of 
pressure via (13) becomes accurate when approximation (12b) is used. The 
quantities S(0 ) ,S(1 ) , V{0 ) , VO) necessary to utilize (19) are known due to 
the described computer experiments. Table IV shows that the influence of 
using •iV{o) and kiS(0 ) instead of vy(i) and sy(i) becomes negligible at 
z ~ 0.70 if an inaccuracy of 1% is assumed for the data. Thus, the pressure 
of the high-density fluid and the whole solid can be determined via (12b) 
and 03) ,  in the following, called method 4. The usual Monte Carlo method 
to determine the hard-disk pressure needs the radial distribution function at 
contact, g(a). Due to the necessary extrapolation, this method ("g") in- 

Table IV. Q = (s//vf)(AS(o)/AV(o)) -l, Estimated via Eq. (19) 

z 0.55 0.60 0.65 0.70 0.75 
Q 1.062 1.030 1.011 1.002 1.001 

i ii  
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eludes an additional uncertainty. Both methods have been compared in an 
additional investigation. For this purpose, Monte Carlo runs have been 
carried out for N = 71, 72, and 73 at z = 1/1.4 = 0,714. For each particle 
number, three box shapes have been investigated, length ratio �88 
1.299 of the rectangular cell corresponding to the usual boundary condi- 
tions for 72 disks. Each run consisted of 6 • 105 trials, every 200th trial 
being analyzed. Table V shows the results for compressibility factor Z = 
PV/(NkT), the accuracy being +0.1. For a detailed analysis of the 
standard deviation, see below. The results of the two methods do not differ 
systematically, el. the last line of Table V. This is no surprise because 
approximation (12b), estimated via Eq. (19), reduces Z only by 0.0l 
compared with the correct Eq. (13). Thus, both methods (A and g) are 
considered to yield unbiased estimates of the same Z for a given computer 
run. Then the differences between ZA and Zg shown in Table V result from 
the uncertainty of the extrapolated g(o). This can be verified by a study of 
the variances Var. For method A,, the variance Vara of Za in a computer 
run comes from the "true" fluctuations during the run. For method g, the 
additional variance Var e due to the uncertainty of the extrapolation is 
assumed to be independent of the above-mentioned fluctuations. Then, the 
law of error propagation yields 

Var~ = Var~ + Var E (23) 

Table V. Compressibility Factor Z = PV/(NkT) 
for Various N and Length Ratios l of the 
Periodic Cell. The Results Z~ and Zg are 

Compared, Methods A and g Being 
Described in the Text. 

N l Z~ Zg 

71 1.05 8.31 a 8.31 
71 1.299 8.31 8.37 
71 1.60 8.20 8.19 

72 1.05 8.25 8.23 
72 1.299 8.26 8.17 
72 1.60 8.04 8.01 

73 1.05 8.20 8.19 
73 1.299 8.12 8.07 
73 1.60 8.09 8.11 

Mean  8.20 8.18 
i i 

aThe s tandard deviation is 0.1 in all cases. 
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Varg --- 0.010 and Vara = 0.007 have been obtained in the computer runs. 
Thus, Var E = 0.003, which yields + 0.05 for the corresponding uncertainty 
of Z. This is confirmed by the root-mean-square deviation of the nine pairs 
(ZA, Zg) of Table V, which is 0.04. From the above considerations it follows 
that at high-density method A is an alternative to the direct determination 
of vf(i) and sf(i) suggested by Hoover et al. (6~ Geometrical analysis of the 
hard-disk system as described throughout the paper yields Za automatically 
without additional consumption of computer time. An analogous analysis 
for the hard-sphere system would also be possible in principle. (2~ However, 
the analytical formula for the intersection of four spheres is lacking up to 
now. We will try to calculate this overlap in order to complete our 
investigations on hard-sphere systems. 
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